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Abstract
The first correction to the total flux of charged particles into a sink including
the mutual influence of the other sink for the system of two charged static sinks
is obtained. It turns out that the correction is negative for a high intrinsic rate
constant and positive otherwise. It is shown that for attractive reactants the
diffusive interaction effect may be neglected even in the case of fully diffusion-
controlled reactions for large enough values of the Onsager length. Moreover
the monopole approximation formula is suggested to describe the diffusive
interaction between closely located sinks.

1. Introduction

The theory of irreversible bulk diffusion-controlled bimolecular reaction between reactants
A and B in an inert solvent A + B → A was first developed by Smoluchowski [1]. The
Smoluchowski theory uses the diffusion equation without considering intermolecular forces
between reactants, and in the diffusion-controlled case it leads to the following steady-state
rate coefficient:

kS = 4π DR, (1)

where D = DA + DB is the coefficient of relative diffusion, and DA and DB are the diffusion
coefficients of particles A and B respectively; R = RA + RB is the encounter distance. Later,
Debye [2] generalized this result, incorporating in the theory the influence of interparticle
interaction potential U(r):

kD = 4π D

[∫ ∞

R

1

r 2
eβU(r) dr

]−1

. (2)
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Here β = 1/kBT , kB being the Boltzmann constant; T is the absolute temperature. Hummel [3]
made a further generalization using the partially reflecting boundary condition instead of the
Smoluchowski one which was used by Debye. In the case of Coulomb interparticle potential,
the Hummel rate constant reads

kH = 4π Dηrc

[(
1 + 4πηrc D

kin

)
exp(ηrc/R) − 1

]−1

, (3)

where rc is the Onsager length, rc = β|zAzB|e2/4πε0εr (here ε0 is the permittivity of free
space, and εr is the dielectric constant of the medium, e is the electronic charge, and zAe and
zBe are charges of ions A and B, respectively); η = sgn(zAzB); kin is the intrinsic rate constant
at the encounter distance. It is well known that these formulae work well for many systems with
interparticle interaction [4]. However, they do not depend on the concentration of particles A.
Therefore, the validity of equations (2) and (3) for non-dilute systems is questionable.

It is clear that, for example for a fully diffusion-controlled reaction, the local concentration
of particles B around each reactive particle A (sink) is affected by the presence of neighbouring
sinks. This effect is called competition or diffusive interaction (DI) by analogy to the
hydrodynamic interaction [5, 4, 6]. It is worth noting that in the case of different sinks the terms
‘competition’ and ‘diffusive interaction’ may be used as synonyms. We should stress that one
cannot consider the total flux of particles into the sinks (divided by bulk concentration) as the
reaction rate coefficient, unlike in the case of one test sink for dilute systems. In the case of
fully diffusion-controlled reaction into two sinks, this flux is known to decrease when we reduce
the distance between the sinks. On the other hand, in the thermodynamic limit of a many-sink
system the relevant rate coefficient increases as the mean distance between sinks decreases (i.e.,
when the concentration increases) [4]. It is also important to note that DI manifests itself in the
case of finite values of the reaction radius R and vanishes in the case of R = 0 [7]. It is well
known that in general the treatment of the competition effects encounters serious theoretical
difficulties even for neutral reactants. In this connection the model of diffusion-controlled
processes into multiple immobile sinks has been widely investigated by many authors [5, 8–10].
It is worth noting that the reaction-induced fluctuations in the reactant densities play sometimes
very important role (see, e.g., the book [11] and references therein). In this approach, spatial
correlations of reactants arising due to reaction are taken into account. However, the problem
we treated here is not directly related to fluctuation-controlled kinetics.

In the simplest case of DI between two equal stationary uncharged sinks with the
Smoluchowski boundary condition on their surfaces, the first correction due to the presence
of the other sink to the total flux of diffusing particles into one sink � is [12, 6]

�(0) = kS

(
1 − R

L

)
, (4)

where L is the distance between the sinks. In analogy to the above result one might expect
that in the case of ionic particles interacting through the potential of attraction the DI is more
profound, and the first correction to the total flux has the form

�(U) = kD

(
1 − R̃

L

)
, (5)

where R̃ = kD/4π D is the so-called ionic reaction length. In this paper we will find the first
correction to the flux and show that in the case of Coulomb potential the expression (5) does
not hold.

The problem discussed above is important in understanding the origin of the competition
effects and it will allow us to investigate the concentration dependence of the rate coefficient,
since this dependence arises from the competition effects.
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Figure 1. Two competing sinks of radii R with separation L .

The main goal of the present paper is to treat the DI between two immobile charged sinks
absorbing charged reactants. We find simple formulae to estimate the effect of the DI in the
system under consideration. In particular, for the fully diffusion-controlled regime we will
show that in the case of ions the DI effect on diffusion-controlled reactions is weaker than in
the case of uncharged particles. The outline of the paper is as follows. In section 2 we pose
the boundary value problem describing the recombination of ions subjected to the partially
reflecting condition on the reaction surface. Section 3 presents an approximate solution of the
posed problem with the help of matching asymptotic expansions and the reflection method.
Here we obtain the first correction due to the presence of the other sink. Some results obtained
are discussed in section 4. In section 5 the main conclusions of the paper are given.

2. Statement of the problem

Let us treat the motion of diffusing negative ions B− carrying the charge zBe < 0 around two
immobile positive ions A+ (sinks) carrying the charge zAe > 0. For the sake of simplicity we
assume a case of equal sinks of the same radii, i.e., R1 = R2 = R, and let L be the distance
between sinks. We also assume that the B− ion concentration is small enough to neglect the
dynamical interaction between ions. Thus any ion B− diffuses under the action of the following
potential,

βU(r) = −rc

(
1

r1
+ 1

r2

)
, (6)

where r1 and r2 are the radial coordinates of ion B− with respect to the spherical coordinates
associated with sink I and II, respectively, where we take the z axis along the direction of the
vector L connecting the centres of the sinks (see figure 1).

As is known, at short times the effect of reaction appears only in a close neighbourhood
of each sink and, therefore, the sinks do not ‘feel’ each other for the initial time period. In the
course of time, however, the influence of the neighbouring sink appears, and becomes stronger
and stronger. Thus, it is clear that the diffusive interaction becomes profound at the steady
state [13]. This allows us to estimate the maximum of the DI effect using the relevant steady-
state Debye–Smoluchowski equation (DSE),

D∇(∇nB + nB∇βU) = 0. (7)

Apparently for the model at issue D = DB.
We assume that the recombination occurs when ions A+ and B− approach the encounter

distance R. Therefore, in a partially diffusion-controlled regime the following boundary
condition is assumed to be posed:

4π R2 D

(
∂nB

∂r
+ nBβ

∂U

∂r

)∣∣∣∣
ri =R

= kinnB|ri =R . (8)
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In a fully diffusion-controlled regime (kin → ∞) the corresponding boundary condition reads

nB|ri =R = 0. (9)

At infinity, nB approaches its bulk value n0, i.e.,

nB|ri →∞ → n0. (10)

In equations (8)–(10) and hereafter i = 1, 2. From the mathematical point of view for the
problems associated with the DI it is convenient to write the posed boundary-value problem in
terms of the function n = 1 − nB/n0, which vanishes at infinity. Moreover, it is convenient
for the further asymptotic solution to proceed to the dimensionless radial variables xi = ri/R.
Thus the posed boundary-value problem (7)–(10) takes the form

∇2
x n + ∇x n∇xβU = 0, (11)

∂n

∂xi

∣∣∣∣
xi =1

= (r∗
c − h)(1 − n|xi =1), (12)

n|xi →∞ → 0, (13)

where r∗
c = rc/R is the dimensionless Onsager length and h = kin/kS is the dimensionless

intrinsic rate constant. For a fully diffusion-controlled regime the boundary condition (12) is
simplified to

n|xi =1 = 1. (14)

Note that in many works on diffusion-controlled reactions between ions the spatial scale is
usually chosen as rc. For Coulomb interacting particles this seems inconvenient because in this
case rc has no relation to the space characteristic of the diffusion process [14]. The value of rc

makes the only physical sense as the distance where electrostatic energy is equal to the thermal
one.

3. Solution of the problem

Obviously, due to complicated geometry (we have the problem in a periphractic domain with
two disconnected boundaries), it is not feasible to reduce the given DSE in the region outside
the sinks to an equation with separable or R-separable variables. Moreover, in contrast to the
pure diffusion case [6] or diffusion in an external electric field [15], the relevant DSE cannot be
solved analytically even in the relevant local coordinates. However, if we limit ourselves to the
calculation of the first correction due to the DI to the Debye or Hummel results (equation (2)
or (3), respectively) the problem may be quite easily solved with the help of the matching
asymptotic expansions [16] and reflections method in the dimensionless reciprocal distance
ε = R/L � 1 [6, 15].

It is convenient to separate the space outside the i th sink into two parts: 	
(in)
i and 	

(out)
i

(see figure 1). The domains 	
(in)
i = {xi ∈ R3 : 1 < xi < O(ε−1)} and 	

(out)
i = {xi ∈ R3 :

O(ε−1) � xi} are called the inner and outer regions corresponding to the i th sink, respectively.
The relevant asymptotic solutions we shall denote as n(in)

i and n(out)
i , and 	

(out)
1,2 = 	

(out)
1 ∩	

(out)
2 .

It is evident (see figure 1) that in the local spherical coordinates system associated with
the i th sink

U∗(x) = −r∗
c

(
1

xi
+ 1

x j

)
= −r∗

c

⎛
⎝ 1

xi
+ 1√

x2
i + ε−2 − 2xiε−1 cos θi

⎞
⎠ . (15)

4
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Hereafter i, j ( 	= i) = 1, 2 and θi is the corresponding polar angle for the i th sink. Using the
well-known property of a generating function of Legendre polynomials Pν(μi) [17]

1√
x2

i + ε−2 − 2xiε−1μi

= ε

∞∑
ν=0

(εxi)
ν Pν(μi ), (16)

where μi = cos θi , we see that in the local coordinates system associated with the i th sink the
DSE reads

∇2
xi

n(in)

i + r∗
c

[
1

x2
i

− ε2
∞∑

ν=0

(1 + ν)(εxi)
ν Pν+1(μi)

]
∂n(in)

i

∂xi

− ε2 r∗
c

x2
i

[ ∞∑
ν=1

εν−1xν
i

d

dμi
Pν(μi )

]
(1 − μ2

i )
∂n(in)

i

∂μi
= 0, (17)

where

∇2
xi

= 1

x2
i

∂

∂xi

(
x2

i

∂

∂xi

)
+ 1

x2
i

∂

∂μi

[
(1 − μ2

i )
∂

∂μi

]
.

Taking into account the condition of uniform convergence of the series (16) one can conclude
that equation (17) holds when εxi < 1 (or ri < L), i.e., it is evident that equation (17) is valid
everywhere in 	

(in)
i .

In the outer domain 	
(out)
i it is convenient to introduce the outer ‘compressed’ variables

(ξi , μ
∗
i ), in such a way that ξi = εxi , μ

∗
i = μi . The corresponding outer equation in terms of

outer variables may be obtained from (11) with the help of the expression (15):

∇2
ξi

n(out)
i + εr∗

c

[
1

ξ 2
i

+ (ξi − μi )

x j(ξi )3

]
∂n(out)

i

∂ξi
− ε

r∗
c

ξ 2
i

(1 − μ2
i )

x j(ξi )3

∂n(out)
i

∂μi
= 0. (18)

It is clear from equation (13) that one should pose the following condition at infinity:

n(out)
i |ξi →∞ → 0. (19)

We will look for the inner and outer expansions of the solution in the form

n(in)
i = n(in)

i0 (xi , μi ) + α
(in)
1 (ε)n(in)

i1 (xi , μi ) + · · · (20)

n(out)
i = n(out)

i0 (ξi , μi ) + α
(o)

1 (ε)n(out)
i1 (ξi , μi ) + · · · , (21)

where α
(in)
1 (ε) → 0, α

(o)
1 (ε) → 0 as ε → 0. The matching condition of the inner

expansion (20) and outer one (21) is

n(in)

i (xi , μi)|xi →∞ = n(out)
i (ξi , μi )|ξi→0. (22)

According to the procedure we start from the outer solution of the zeroth order, satisfying (19),
which is trivial:

n(out)
i0 (ξi , μi ) = 0. (23)

Now we should find the inner solution of the zeroth order which matches this solution.
Substitution of the expansion (20) into (17) gives

d2n(in)
i0

dx2
i

+
(

2

xi
+ r∗

c

x2
i

)
dn(in)

i0

dxi
= 0. (24)

Therefore the functions n(in)

i0 do not depend on an angular variable. It is clear that the function
n(in)

i0 satisfies the boundary condition (12), i.e.,

∂n(in)
i0

∂xi

∣∣∣∣
xi =1

= (r∗
c − h)(1 − n(in)

i0 |xi =1)

5



J. Phys.: Condens. Matter 19 (2007) 065109 S D Traytak and M Tachiya

or in the fully diffusion-controlled case

n(in)
i0 |xi =1 = 1

and, moreover, in order to match (23) the functions n(in)
i0 should vanish at infinity. Hence it is

evident that the zeroth-order inner approximation is

n(in)

i0 (xi) = A(0)
i [1 − exp(r∗

c /xi)], (25)

where

A(0)
i =

[
1 −

(
1 − r∗

c

h

)−1

er∗
c

]−1

.

It is easy to see that

0 � A(0)
i � 1 if h � r∗

c ,

|A(0)

i | < (er∗
c − 1)−1 if h > r∗

c ,

and we can consider A(0)

i = O(1) as ε → 0.
Let us represent the zeroth-order inner solution (25) in terms of outer ‘compressed’ variable

ξi and expand it in powers of ε, assuming that ξi = O(1) as ε → 0, i.e.,

n(in)
i0 (ξi ) = A(0)

i [1 − exp(εr∗
c /ξi)] ∼ −εA(0)

i r∗
c

1

ξi
. (26)

It follows from this equation that α
(o)
1 (ε) = ε. Provided we substitute function εn(out)

i1 into
equation (18) and retain terms O(ε), we get

∇2
ξi

n(out)
i1 = 0. (27)

The general solution of this equation vanishing at infinity is

n(out)
i1 =

∞∑
l=0

Blξ
−(l+1)
i Pl(μi )

and the matching condition (22) for the inner n(in)
i0 and outer n(out)

i1 solutions yields the
expression for the unknown constants:

B0 = −A(0)
i r∗

c , Bl = 0 (l = 1,∞).

Thus we get

n(out)
i1 (ξi , μi ) = −A(0)

i r∗
c

1

ξi
. (28)

Therefore, solution (25) is uniformly valid in the whole domain when xi > 1.
It is clear that the inner domain of the j th sink belongs to the outer domain of the i th sink

(i.e., 	(in)
j ⊂ 	

(out)
i ). Hence in the local coordinates associated with the j th sink one can rewrite

equation (28) as follows:

εn(out)
i1 (x j) ∼ −εA(0)

i r∗
c

[ ∞∑
ν=0

(εx j)
ν Pν(μ j )

]
.

If we substitute this function into the corresponding DSE written in the local coordinates
associated with the j th sink it satisfies the equation with accuracy up to O(ε2). Therefore,
the terms o(ε) in this expansion may be omitted. It is now clear that in a neighbourhood of the
j th sink the function α

(in)
1 (ε) = ε.

6
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According to the method of reflections we have in a neighbourhood of the j th sink the
two-term solution for the domain 	

(in)
j :

n(in)
j = n(in)

j0 (x j) + εn(in)
j1 (x j , μ j ), (29)

where

n(in)
j1 (x j , μ j) = n(1)

j1 (x j , μ j ) + n(out)
i1 (x j).

We can interpret the term εn(1)
j1 as the first reflection of the field n(out)

i1 (x j) near the j th
sink [6, 15], which compensates a change in the boundary condition on the surface of the
j th sink. In this way function n(in)

j1 should be responsible for the DI between sinks.

Substitution of the function n(in)

j into equation (17) yields the general solution for n(1)

j1 :

n(1)

j1 (xi) = A(1)

j [1 − exp(r∗
c /x j)], (30)

where A(1)

j is a constant to be determined by the boundary condition. It is clear that if one

changes j → i the expression (29) holds in the domain 	
(in)
i as well. Now we can find the

unknown constant A(1)
j in the formula (30) which, due to the symmetry of the problem, is equal

to A(1)

i .
As was pointed out above, the function n(in)

j1 describes the influence of the i th sink on the

j th one, and in order to obtain A(1)
j we should pose the following boundary condition:

ε
∂n(in)

j1

∂x j

∣∣∣∣
x j =1

= −(r∗
c − h)(1 − εn(in)

j1 |x j =1). (31)

Particularly for the fully diffusion-controlled recombination condition, (31) gives the usual
condition in the method of reflections [6, 15]

(n(out)
i1 + n(in)

j1 )|x j =1 = 0. (32)

One can see that the condition (31) leads to

A(1)
j = A(1)

i = (A(0)
j )2r∗

c .

Thus we have derived a simple two-term expression approximately describing the
concentration field in a neighbourhood of the j th sink within accuracy O(ε):

n(in)
j = n(in)

j0 − εA(0)
j r∗

c (1 − n(in)
j0 ). (33)

Formula (33) allows us to find an approximation for the total flux of diffusing ions B− into the
j th sink, divided by n0kS, i.e.,

�(r∗
c , ε) =

[
−∂n(in)

j

∂x j
+ r∗

c (1 − n(in)

j )

]∣∣∣∣
x j =1

= �(r∗
c , 0)(1 + εA(0)

j r∗
c ). (34)

Here

�(r∗
c , 0) = kH(r∗

c )

kS
= r∗

c

1 − (1 − r∗
c
h ) exp(−r∗

c )
(35)

is the dimensionless Hummel rate coefficient for the attractive Coulomb potential [3].

7
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Figure 2. Plots of the first approximation to the correction factor χ as a function of the
dimensionless Onsager length r∗

c and different reactivity h at L = 10R.

4. Discussion

4.1. Partially diffusion-controlled recombination

We can rewrite the obtained formula (34) in a more convenient form:

χ(r∗
c , h, ε) = 1 + εA(0)

j r∗
c . (36)

Here we have introduced the function χ(r∗
c , h, ε) = �(r∗

c , ε)/�0, where �0 = �0(r∗
c , 0) is the

dimensionless total flux unperturbed by the other sink. It is clear that this function characterizes
the strength of the DI (see figure 2).

In the case of very small reactivity, i.e., as h → 0, we have n(in)

j0 → 1 − exp(r∗
c /x j), and

A(0)
j → 1. So the general formula (33) is reduced to

nB = n0(1 + εr∗
c ) exp(r∗

c /x j)

and, therefore, nB → n0(1 + εr∗
c ) as x j → ∞. It is important to note that in this case the

concentration of particles B− increases near the boundary of the sinks.
One can see from figure 2 that the function χ(r∗

c , h, ε) for any fixed values of ε and h has
a maximum in the region where the correction due to the DI is positive. The dependence of the
location of this maximum on the value of h is presented in figure 3.

If r∗
c < h the correction due to the DI is always negative and χ < 1. The case r∗

c = h is
critical, because for this case the DI disappears completely. Provided r∗

c > h we have a positive
correction, which due to the exponent exp(r∗

c ) in A(0)

j tends to zero as r∗
c → ∞ (see figure 2).

In both cases due to the presence of the other sink the background concentration n(in)∞ =
limxi →∞ n(in) changes: for high reactivity (h � 1) it is less than the bulk concentration value
n0 and for low reactivity (h < 1) it is more than n0. Therefore, for these two cases this
leads to a decreasing of the diffusive flux (∝ ∂n/∂xi) because the concentration nB differential
|nB|xi =1 −n(in)∞ | becomes smaller. However, in the case of high reactivity this flux is towards the
reaction surface and the DI decreases the flux into the i th sink but in the case of low reactivity
the diffusive flux is outwards from the reaction surface and the DI increases the flux into the i th
sink (see figure 4).

8
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Figure 3. The location r∗
c of the maximum of the first approximation to the correction factor χ as a

function of h.
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Figure 4. The local concentration distribution in a neighbourhood of a sink at L = 100R and
r∗

c = 1 for low reactivity h = 0.1 (solid line) and high reactivity h = ∞ (dotted line).

4.2. Fully diffusion-controlled recombination

In the case of fully diffusion-controlled recombination, equation (36) may be written in an
alternative form:

χ(r∗
c , ε) = 1 − kD(−r∗

c )

4π DL
, (37)

where

kD(r∗
c ) = kSr∗

c

1 − exp(−r∗
c )

(38)

is the Debye rate constant (2) for the attractive Coulomb potential. In expression (37) we used
the fact that for the Coulomb potential the following identity holds:

kD(−r∗
c ) = kD(r∗

c )e−r∗
c .

9
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It is worth noting that kD(−r∗
c ) corresponds to the case of repulsive potential with the same

Onsager length r∗
c .

It follows from (37) that for fully diffusion-controlled recombination the DI should be
important when r∗

c � 1. Otherwise one can ignore the DI and calculate the total flux by the
Debye formula (38).

4.3. Monopole approximation

Keeping dipole-type terms of O(ε2) in the potential expansion (16), equation (17) may be
written as follows:

∇2
xi

n +
(

r∗
c

x2
i

− ε2r∗
c μi

)
∂n

∂xi
− ε2r∗

c (1 − μ2
i )

1

xi

∂n

∂μi
= 0. (39)

One can see that this equation is of the form of the DSE (11) with the ‘effective potential’

βUeff = −r∗
c

xi
− ε2r∗

c xiμi .

Equation (39) as applied to reactions in an external electric field was comprehensively
investigated in [18]. It was shown there that increasing the value ε2r∗

c leads to the increasing
of the total flux into the i th sink. It is worth noting that the drift term in equation (39) arises
from the presence of the other sink. Therefore the inclusion of dipole-type terms leads to the
decrease of the DI effect. Thus in order to estimate the maximum of the DI one should consider
the monopole approximation for the potential (16), i.e., the corresponding DSE is simplified
to (24). Furthermore, the latter equation may be studied more thoroughly and we can find the
renormalized flux into the i th sink taking into account all reflections for the local concentration
indirectly. This procedure is equivalent to partial summation of the regular perturbation series,
and usually leads to an improved approximation [6].

In order to derive the monopole approximation we consider solutions vanishing at infinity
and uniformly valid outside the sinks:

n = Ai [1 − exp(r∗
c /xi)] + A j [1 − exp(r∗

c /x j)], (40)

where Ai and A j are some unknown constants (it is evident due to the symmetry of the problem
that Ai = A j ). In a neighbourhood of the i th sink for the monopole approximation, (40) yields

nmon = Ai [1 − exp(r∗
c /xi) − εr∗

c ]. (41)

Using the boundary condition (12) we can find the constant Ai :

Ai =
[
(1 − r∗

c ε) −
(

1 − r∗
c

h

)−1

exp(r∗
c )

]−1

and therefore the total flux is

�mon(r
∗
c , ε) = �(r∗

c , 0)

1 + (1 − r∗
c
h ) exp(−r∗

c )�(r∗
c , 0)ε

. (42)

Using this approximate formula we can obtain the exact first correction due to the DI given by
equation (34) that lends support to its validity.

The dependence of the corresponding function χ describing by formulae (34) and (42)
is presented in figures 5 and 6. It is worth noting that for the case of low reactivity the
local concentration of particles B− around the sinks increases, and therefore the monopole
approximation (34) as well as correction (42) is not valid for short distances between sinks. In
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Figure 5. Correction factor for the first correction (34) (solid lines) and the monopole
approximation (42) (dashed lines) in the case of full diffusion control at different values of the
dimensionless Onsager length r∗

c .
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Figure 6. Correction factor for the first correction (34) (solid lines) and the monopole
approximation (42) (dashed lines) in the case of h = 1 at different values of the dimensionless
Onsager length r∗

c .

fact, in order for the total flux �mon(r∗
c , ε) to be positive at least the following inequality should

hold true: ∣∣∣∣1 − r∗
c

h

∣∣∣∣ exp(−r∗
c )�(r∗

c , 0)ε < 1;

but at low reactivity this is violated for finite values of r∗
c and ε.

In the fully diffusion-controlled case, the monopole approximation (42) yields

�mon(r
∗
c , ε) = kD(r∗

c )

1 + εkD(−r∗
c )

. (43)
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It is worth noting that for uncharged particles we get from this equation the known formula of
Deutch et al [8]

�mon(0, ε) = 1

1 + ε
.

5. Concluding remarks

In this paper we have extended the Debye–Hummel theory of diffusion-controlled reactions
between charged reactants A+ and B− to the situation when the particles A+ (sinks) are
mutually closely located. We have derived a simple expression for the total flux of particles
B− into a sink including the first correction due to the presence of the other sink. We have
shown that: (a) in the case of very large values of the intrinsic rate constant this correction is
always negative and the diffusive interaction decreases the flux into a sink; (b) in the case of
small values of the intrinsic rate constant the above correction changes its sign for sufficiently
large Onsager length, becoming positive, and thus the diffusive interaction increases the flux
into a sink (see figure 2). Moreover, for the fully diffusion-controlled case we have proved
that for large values of the Onsager length the effect due to diffusive interaction becomes
unimportant and the well-known Debye formula works well even for non-dilute systems of
sinks. A monopole approximation has been suggested to describe the higher-order correction
to the diffusive interaction. However, for the case of low reactivity it works only for large
enough distances between sinks. Based on the present study we reach the conclusion that the
local concentration field is screened for the Coulomb potential and it becomes long ranged for
short-range dynamic potentials.

Future extension of the present study may include the numerical solution of the relevant
boundary value problem in order to find the range in which the analytical formulae obtained
are valid [19].
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